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The Category of Finite Dimensional Operator Spaces

Thea Li

Abstract. In this report we investigate the semantical properties of the category of finite di-
mensional operator spaces, in particular we prove that it is a non-degenerate model of multiplicative
additive linear logic. We also argue that this category gives a good basis for modeling BV-logic, an
extension of multiplicative linear logic by showing that it is a BV-category.
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1 Introduction

Many concepts in quantum information theory can be modeled using mathematical methods from
linear algebra, functional analysis and operator algebras. While these are often well understood from
a physics and mathematics perspective, they are not always well understood from a computer science
perspective. The Heisenberg-Schrödinger duality describes the equivalence between two views on
the evolution of quantum systems. Mathematically it is stated as an equivalence of two types of
maps between two types of operator spaces that are dual to each other under the operator space
dual, see [ER00]. The categorical properties of this duality suggest that the Heisenberg-Schrödinger
duality could be seen from a linear logic (LL) point-of-view. Indeed the negation in LL is a type
of duality. Traditionally the basis for quantum programming languages has been intuitionistic LL
[SV05], however, to properly capture the Heisenberg-Schrödinger duality, we need double negation
and consequently classical LL. Thus a first step towards a computational or logical characterization
of the Heisenberg-Schrödinger duality would be to prove that the category of operator spaces gives
semantics for some fragment of classical LL.

The theory of operator spaces has been extensively studied from a functional analysis perspec-
tive, consequently the basis theory is very rich, [ER00]. A significant part of it parallels Banach
space theory, which has interesting categorical properties. For example, the category of finite di-
mensional Banach spaces is known to be a model of classical multiplicative additive linear logic
(MALL), [Egg14]. Just as for Banach spaces, many constructions and results concerning operator
spaces translate well into categorical concepts. For example, we can prove that the operator space
dual gives a dualizing endofunctor on category of finite dimensional operator spaces, such that a
space is naturally isomorphic to its double dual.

Our main objective in this work will thus be to investigate the semantical properties of the
category of finite dimensional operator spaces. In particular we prove that it is a non degenerate
model of (classical) MALL, where connectives can be interpreted by notions inherent to functional
analysis. As we can define a non-commutative and self dual tensor on finite dimensional operator
space, we also argue that this category might provide a good basis for modeling BV-logic, an
extension of the multiplicative fragment of LL. To this end, we prove that the category of finite
dimensional operator spaces is a BV-category, in the sense of [BPS10]. While this is not sufficient
to claim that it is a model of BV-logic, it is not yet clear what a categorical model of BV-logic
should be.

We assume that the reader has basic background in category theory as well as linear logic. We
do however provide a introduction to the necessary concepts in operator spaces theory, with a slight
emphasis on the categorical properties of the constructions, assuming only basic linear algebra.

2 Operator spaces

Recall the well known result stating that any normed space can be realized as a function space, a
space of bounded linear endofunctions with the uniform norm. The study of operator spaces arises
when we consider the linear subspaces of bounded operators on a Hilbert space. This space not only
inherits an operator norm, as any n × n matrix of operators on a Hilbert space can be seen as an
operator on Hn, it inherits an operator norm on each of the spaces of matrices with entries in the
subspace. Because of this higher structure, operator spaces can be seen as the ”non-commutative”
or ”quantized” generalization of the theory of Banach spaces. The definitions and results in this
section are standard in operator space theory and can be found in [ER00], [BP91] or [Ble16], we
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thus only give a handful of proofs that either illuminates the theory or illustrates the usefulness of
a result.

2.1 Preliminaries

In order to define operator spaces we first need to introduce some basic concepts and notations
from functional analysis. As mentioned above, the notion of operator space rely on the structure
of two other types of normed spaces.

Definition 2.1. A Banach space is a normed vector space that is complete with respect to the
metric induced by the norm.

Proposition 2.2. Any finite dimensional normed space is a Banach space.

Definition 2.3. A Hilbert space is an inner product space that is also complete with respect to
the metric induced by the inner product.

As the metric induced by the inner product on a Hilbert space also induces a norm, every Hilbert
space is also has a Banach space structure.

We can naturally define a norm on linear maps between normed spaces in the following way.

Definition 2.4. Given a linear map between normed vector spaces φ : A → B we define the
operator-norm of φ by

∥φ∥op = sup{∥φ(a)∥ | ∥a∥ ≤ 1}

We say that a linear map between normed spaces φ is bounded if ∥φ∥ <∞.
A simple example of a Banach space is the vector space of bounded linear functions between

two Hilbert spaces with the operator norm. For Hilbert spaces H and K this space is denoted by
B(H,K), and if H = K the notation is simplified to B(H). Note that Banach spaces of the form
B(H) are important as they enable our first definition of operator spaces.

Definition 2.5. Given a vector space V , the n×m matrix space of V is the vector space of n×m
matrices with entries in V , denoted Mn,m(V ).

To simplify notation we denote Mn,n(V ) by Mn(V ) and Mn(C) by Mn. Another notation we
introduce is setting Hn = H ⊕ ... ⊕ H, where ⊕ is the direct sum of Hilbert spaces. We have an
isometric identification Mn(B(H)) = B(Hn), which in particular implies that each matrix space of
B(H) can be seen as operator normed spaces.

Definition 2.6. [ER00, p. 20] A concrete operator space A on a Hilbert space H, is a complete
linear subspace A ↪→ B(H).

This naturally induces a norm on each matrix space of A given by the inclusion

Mn(A) ↪→ Mn(B(H)) = B(Hn)

Example 2.7. Consider the isometry ι : C ∼= B(C) : c 7→ (a 7→ ca), this induces an operator space
structure on C, to be specific

Mn(C) ∼= Mn(B(C)) = B(Cn)
c = [ci,j ] 7−→ [ι(ci,j)]
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We denote by Mn,m the normed space that have Mn,m as underlying vector space equipped
with the norm given by the isometric identification Mn,m = B(Cm,Cn).

Having to point out the Hilbert space, can make it hard to verify that new constructions on
operator spaces, indeed give other operator spaces. In order to have a completely abstract definition
we can instead require two conditions to be satisfied by the norms on the matrix spaces, these
guarantee that the spaces in question behave as if they were embedded into a B(H), see [ER00,
Ch. 2].

Definition 2.8. [ER00, p. 20] A matrix norm on a linear space A is an assignment of a norm
∥ − ∥n on Mn(A) for each n ∈ N.

Given such a space A, the normed space (Mn(A), ∥ − ∥n) will be denoted by Mn(A).

Definition 2.9. [ER00, p. 20] An abstract operator space A is a linear space equipped with a
matrix norm, that is a Banach space with respect to ∥ − ∥1, and such that

• (M1) ∥a⊕ b∥m+n = max{∥a∥m, ∥b∥n}

• (M2) ∥αaβ∥n ≤ ∥α∥∥a∥m∥β∥

for a ∈Mm(A), b ∈Mn(A), α ∈Mn,m and β ∈Mm,n.

The two axioms above are usually referred to as Ruan’s axioms. As a consequence to Proposi-
tion 2.2 any matrix normed finite dimensional space satisfying Ruan’s axioms is an operator space.

Example 2.10. Let H be a Hilbert space, then the column Hilbert operator space Hc is H with
the operator space matrix norm given by the isometry C : H → B(C, H) : h 7→ (n 7→ nh). In
particular, given an h ∈Mn(H) we have a

Cn(h) : Cn → Hn[
ci
]

7→
[
C(ci)

]
and ∥h∥c = ∥Cn(h)∥. In particular, we have that Cc = C.

As the important part of the structure of operator spaces is given by the matrix space structure,
morphisms between operator spaces naturally need to reflect this.

Definition 2.11. [ER00, sec 2.2] The nth amplification of a map between two abstract operator
spaces φ : A→ B is defined by the following

φn : Mn(A) → Mn(B)
a 7→ [φ(ai,j)]

Now we can define the analogous notion of a bounded linear function for operator spaces:

Definition 2.12. [ER00, sec 2.2] Let A and B be operator spaces and φ : A→ B be a linear map.
We define the cb-norm on a morphism between operator spaces by

∥φ∥cb = sup{∥[φ(ai,j)]∥n | n ∈ N, a = [ai,j ] ∈Mn(A), ∥[ai,j ]∥n ≤ 1}

Definition 2.13. [ER00, sec 2.2] Let A and B be operator spaces and φ : A→ B be a linear map,
we call φ completely bounded if ∥φ∥cb <∞.
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As well as the analogs of contractions and isometries:

Definition 2.14. [ER00, sec 2.2] Let A and B be operator spaces and φ : A→ B be a linear map,
we call φ completely contractive if ∥φn(a)∥n ≤ ∥a∥n for each a ∈Mn(A).

(This is equivalent to ∥φ∥cb ≤ 1).

Definition 2.15. [ER00, sec 2.2] Let A and B be operator spaces and φ : A→ B be a linear map,
we call φ completely isometric if ∥φn(a)∥n = ∥a∥n for each a ∈Mn(A).

Similarly to how the operator norm gives the mapping spaces of Banach spaces a Banach
space structure, the cb-norm induces an operator space structure on the linear space of completely
bounded linear functions between two operator spaces. Given two operator spaces A and B, the
linear space of completely bounded maps from A to B together with the cb-norm is denoted by
CB(A,B).

Proposition 2.16. [ER00, Prop. 3.2.5] Given operator spaces A and B, CB(A,B) is a Banach
space.

The matrix norm of this mapping space is induced by the following isometric identification.

Proposition 2.17. [Ble16, Par. 1.2.18] We have an isometric isomorphism Mn(CB(A,B)) ∼=
CB(A,Mn(B))

Proof. We define a linear function from Mn(CB(A,B)) to CB(A,Mn(B)) by mapping a matrix of
cb-maps

f = [fi,j ] ∈Mn(CB(A,B))

to the morphism from A to B that sends a ∈ A to [fi,j(a)], which is linear and completely bounded
as each of the fi,j ’s are. This is an isometry as

∥[fi,j ]∥n = sup{∥[fi,j(ak,l)]∥nm | n ∈ N, [ak,l] ∈Mm(A), ∥[ak,l]∥m ≤ 1} = ∥(a 7→ [fi,j(a)])∥cb

We can now verify that the cb-norm gives this an operator space structure.

Proposition 2.18. [Ble16, Par. 1.2.18] The linear space of completely bounded maps between two
operator spaces, denoted CB(A,B), equipped with ∥ − ∥cb is an operator space.

Proof. By Proposition 2.16 the underlying normed space is a Banach spaces. No we verify M1,
suppose f = [fij ] ∈Mm(CB(A,B)) and g = [glk] ∈Mn(CB(A,B)), then

∥f ⊕ g∥m+n =

∥∥∥∥([fij ] 0
0 [glk]

)∥∥∥∥
= ∥f ⊕ g∥cb

= sup{r | ∥[(f ⊕ g)ij(xlk)]∥ ≤ r∥x∥ with x ∈Mn(A)}

= max(∥f∥m, ∥g∥n)
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And for M2
∥α[fij ]β∥ = ∥[

∑
j

∑
k

αijfjkβkl]∥ ≤ ∥α∥∥f∥cb∥β∥

More elaborate descriptions can be found in [ER00, Sec. 2.1-2.2]
By taking the codomain in this mapping space to be C we obtain a notion of dual space for

operator spaces.

Definition 2.19. [ER00, (3.2.1)] Given an operator space A we define its (operator space) dual to
be the operator space A∗ := CB(A,C)

As for any vector space we have a canonical inclusion of an operator space into its double dual.

Proposition 2.20. [ER00, Prop. 3.2.1] Given an operator space A, the canonical inclusion

dA : A ↪→ A∗∗

a 7→ (f 7→ f(a))

is a natural complete isometry.

To prove this we make use of the following lemma:

Lemma 2.21. [ER00, Lemma 2.3.4] Let A be an operator space, then for any a ∈ Mn(A) there
exists a complete contraction f : A→Mn such that

∥fn(a)∥ = ∥a∥

Proof of Proposition 2.20. To prove that this is a complete isometry, let v ∈ Mn(A) and f ∈
Mn(CB(A,C)) then

((dA)n(v))n(f) = [fk,l(vi,j)] = fn(v)

thus

∥dA(v)n∥cb = sup{∥((dA)n(v))n(f)∥ | f ∈Mn(CB(A,C)), ∥f∥cb ≤ 1}
= sup{∥f(v)∥ | f ∈Mn(CB(A,C)), ∥f∥cb ≤ 1}
= sup{∥fn(v)∥ | f ∈ CB(A,Mn), ∥f∥cb ≤ 1}
= ∥v∥

The last step follows from the lemma above.

Corollary 2.22. If A is a finite dimensional operator space, then the embedding dA is an isometric
isomorphism.

Proof. As A and A∗∗ have the same dimension and both are finite dimensional the embedding dA
must by the rank-nullity theorem of vector spaces be an isomorphism of vector spaces.

We now present some useful results we will need later.
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Proposition 2.23. Given two completely bounded maps f : A → B and g : B → C then the
cb-norm is submultiplicative, that is

∥gf∥cb ≤ ∥g∥cb∥f∥cb

Proof. We have
∥gf∥cb = sup{∥gf∥n | n ∈ N}

= sup{∥gf(a)∥n | n ∈ N ∥a∥ ≤ 1}
≤ sup{∥g∥n∥f(a)∥n | n ∈ N ∥a∥ ≤ 1}
≤ sup{∥g∥n∥f∥n | n ∈ N}
≤ sup{∥g∥n | n ∈ N} × sup{∥f∥n | n ∈ N}
= ∥g∥cb∥f∥cb

Proposition 2.24. (appears as a claim in [Ble16, Par. 1.2.3]) Let φ : A→ B be an isomorphism
of the underlying vector spaces, if both φ and φ−1 are completely contractive then φ is a completely
isometric isomorphism.

Proof. As φ is completely contractive, that is ∥φn(a)∥n ≤ ∥a∥n for all n ∈ N and a ∈ Mn(A), it is
sufficient to prove that ∥a∥n ≤ ∥φn(a)∥n. We have that ∥φ−1

n (b)∥n ≤ ∥b∥n, as φ−1 is completely
contractive, thus taking b = φ(a) gives us ∥φ−1

n (φ(a))∥n = ∥a∥n ≤ ∥φn(a)∥n.

The following proposition tells us that we can define a completely bounded function between
operator spaces by specifying it on a dense subspace of the domain. This is useful as we often define
constructions on operator spaces by completing with respect to a norm.

Proposition 2.25. Let A ⊂ B be a dense linear subspace of some operator space B with the
inherited matrix norm, C be an operator space and f : A ⊂ B → C be a completely bounded map,
then f extends uniquely to a map f̄ : B → C such that ∥f̄∥cb = ∥f∥cb.

Lemma 2.26. [ER00, p. 22] Given an operator space A then and sequences a sequence of n × n
matrices whose entries converge in A, then this sequence of matrices converge in Mn(A).

Proof. We have that

∥a∥n = ∥[ai,j ]∥n = ∥
∑
i,j

ai,j⊗Ei,j∥n ≤
∑
i,j

∥Ei,1(ai,j⊗Ei,j)E1,j∥ ≤
∑
i,j

∥ai,j⊕0n−1∥n ≤
∑
i,j

∥ai,j∥1

Let ak = [ai,j,k] ∈ Mn(A) be such a sequence, then given an ε > 0 we have a P ∈ N, such that for
k, k′ > P we have the bound

∥ak − ak′∥n = ∥[ai,j,k] − [ai,j,k′ ]∥n ≤
∑
i,j

∥ai,j,k − ai,j,k′∥1 ≤ n2ε

Proof of Proposition 2.25. Given a y in B there is a sequence {yn}n∈N such that limn→∞yn = y,
we define f̄y = limn→∞fyn. To prove that this indeed well-defined let {yn}n∈N and {y′n}n∈N that
both converge to y ∈ B. We have that

limn→∞∥yn − y′n∥ ≤ limn→∞∥yn − y∥ + ∥y − y′n∥ = 0
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consequently
limn→∞∥fyn − fy′n∥ ≤ limn→∞∥f∥∥yn − y′n∥ = 0

and the sequences {fyn}n∈N and {fy′n}n∈N converge to the same limit. To prove that this is indeed
completely bounded let y ∈Mn(B), then y = [yi,j ] = limk→∞[yi,j,k]. We have that:

∥f̄ny∥n = ∥limk→∞[f(yi,j,k)]∥n
≤ limk→∞∥[f(yi,j,k)]∥n (by Lemma 2.26)
≤ limk→∞∥fn∥cb∥yk∥n (by definition of the cb-norm)
≤ ∥fn∥cb limk→∞∥yk∥n
= ∥fn∥cb∥y∥n

We can deduce from this that ∥f̄∥cb ≤ ∥f∥cb and as f̄nx = fnx for all x ∈Mn(A) we must have
that ∥f̄∥cb = ∥f∥cb.

Uniqueness follows from the fact that any contraction is continuous, and the uniqueness of
limits.

When proving that a completely contractive map is an isomorphism, it might sometimes be
easier to work with the dual spaces as they have a very concrete description, given that they are
cb-normed. The following proposition enables us to do just that.

Proposition 2.27. [Ble16, Exercise 1.2.9] Let A and B are operator space normed vector spaces,
and f : A→ B is an isomorphism of the underlying vector spaces. If f∗ : B∗ → A∗ is a well-defined,
completely isometric and surjective, then f must be completely isometric as well.

Proof. Given an a ∈Mn(A) we have the following sequence of equalities

∥fn(a)∥ = sup{∥gfn(a)∥ | g ∈Mn(B∗) ∥g∥ ≤ 1} (as the double dual embedding is isometric)
= sup{∥gf(a)∥ | g ∈ CB(B,Mn) ∥gf∥ ≤ 1} (by assumption about complete isometry)
= sup{∥h(a)∥ | h ∈ CB(A,Mn) ∥h∥ ≤ 1} (by assumption on surjectivity)
= sup{∥h(a)∥ | h ∈Mn(A∗) ∥h∥ ≤ 1}
= ∥a∥ (as the double dual embedding is isometric)

2.2 Constructions on operator spaces

We give a brief overview of some common constructions considered on operator spaces, as well as
some results about these that will prove useful for Section 3 and Section 4. Many of the constructions
parallel constructions considered on Banach spaces, we can define projective and injective tensor
norms of operator spaces with similar properties as the ones on Banach spaces, as well as direct
sums with lp-norms. We will also recall a tensor norm which is not usually considered in Banach
space theory, the Haagerup tensor product.

As we are interested in describing properties of the category of certain operator spaces, our main
focus will be on properties with a categorical flavour, such as functoriality of the constructions,
universal properties and the naturality of certain morphisms.
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2.2.1 Projective tensor

The projective tensor is for jointly completely bounded maps what the algebraic tensor is for bilinear
maps, that is, it characterizes uniquely jointly completely bounded maps. We give several equivalent
ways to define this tensor product, ranging from concrete descriptions of the matrix norm to ones
induced by embedding the algebraic tensor into an operator space.

Definition 2.28. [ER00, (7.1.8)] Let A and B be operator spaces, then given a u ∈ Mn(A ⊗ B)
we define the projective norm on u to be

∥u∥∧ = inf{∥α∥∥a∥∥b∥∥β∥ | α(a⊗ b)β = u}

for a ∈Mp(A), b ∈Mq(B), α ∈Mn,p×q and β ∈Mp×q,n

Definition 2.29. [ER00, p. 124] Let A and B be two operator spaces then the projective tensor
product, denoted A ⊗̂B, is defined as the completion of A⊗B with respect to ∥ − ∥∧.

Proposition 2.30. [ER00, p. 7.1.1] Let A and B be two operator spaces A ⊗̂B with operator norm
given by ∥ − ∥∧ is an operator space.

The projective tensor is functorial both with respect to completely bounded maps and completely
contractive maps.

Proposition 2.31. [Ble16, p. 68] Given operator spaces A1, A2, B1 and B2 and completely
bounded maps fi : Ai → Bi, we have a completely bounded map defined by the following assignment
on elementary tensors

f1 ⊗̂ f2 : A1 ⊗̂A2 → B1 ⊗̂B2

a1 ⊗ a2 7→ f1(a1) ⊗ f2(a2)

This assignment makes the projective tensor product functorial

Corollary 2.32. [ER00, Cor. 7.1.3] Given operator spaces A1, A2, B1 and B2 and completely
contractive maps fi : Ai → Bi, we have a completely contractive map

f1 ⊗̂ f2 : A1 ⊗̂A2 → B1 ⊗̂B2

Now, let J CB(A,B;C) denote the operator space of jointly completely bounded maps with the
cb-norm, using the identification Mn(J CB(A,B;C)) ∼= J CB(A,B;Mn(C)) for the matrix norm.

Proposition 2.33. [ER00, Prop. 7.1.2] We have a natural isometric isomorphism

CB(A ⊗̂B,C) ∼= J CB(A,B;C)

Proof. Given a jointly completely bounded map φ : A×B → C, this induces a completely bounded
map φ̄ : A ⊗̂B → C by mapping u = α(a ⊗ b)β ∈ Mn(A ⊗̂B) for a ∈ Mp(A) and b ∈ Mq(B) to
α(φp,q(a, b))β. We have that

∥φ̄(u)∥cb ≤ ∥α∥∥φp,q∥∥a∥∥b∥∥β∥ ≤ ∥φ∥cb∥α∥∥a∥∥b∥∥β∥

thus, we have that ∥φ̄n(u)∥ ≤ ∥φ∥cb∥u∥∧ for all u ∈Mn(A⊗B) and consequently ∥φ̄∥cb ≤ ∥φ∥cb. To
prove the equality let ε > 0, for each such ε we can find a pair a ∈Mp(A)∥−∥≤1 and b ∈Mn(B)∥−∥≤1

such that
∥φ∥cb ≤ ∥φp,q(a, b)∥ + ε

9



As we for any such a and b have that

∥a⊗ b∥∧ ≤ ∥a∥∥b∥ ≤ 1

consequently
∥φ∥cb ≤ ∥φ̄p×q(a⊗ b)∥ + ε ≤ ∥φ∥cb + ε

the equality ∥φ̄∥cb = ∥φ∥cb must thus hold.

As a jointly completely bounded map φ : A × B → C for each a ∈ A we have a φ(a,−) ∈
CB(B,C) (and similarly for each b ∈ B) we have that the following proposition holds.

Proposition 2.34. [ER00, Prop. 7.1.2] Given operator spaces A, B and C we have a natural
isomorphism

J CB(A,B;C) ∼= CB(A, CB(B,C))

Proof. Given a φ ∈ J CB(A,B;C) this induces a completely bounded map φ̃ : A → B(B,C) that
maps a ∈ A to φ(a,−), we need to prove that φ̃(a) is completely bounded. We have that for any
b ∈Mn(B)

∥φ̃(a)n(b)∥ = ∥φ1,n(a, b)∥ ≤ ∥φ∥cb∥a∥∥b∥
consequently ∥φ̃(a)∥cb ≤ ∥φ∥cb∥a∥ and φ̃(A) ⊆ CB(B,C). Now ∥φ̃∥cb = ∥φ∥cb as

(φ̃p(a))q(b) = [φ̃(ai,j)(bl,k)] = [φ(ai,j , bl,k)] = φp,q(a, b)

the map θ : J CB(A,B;C) ∼= CB(A, CB(B,C)) : φ 7→ φ̃ is an isometry and as the following diagram
commutes it must be a complete isometry.

Mn(J CB(A,B;C)) Mn(CB(A, CB(B,C)))

J CB(A,B;Mn(C)) CB(A, CB(B,Mn(C)))

θn

∼= ∼=

θ

Combining the results from above we deduce the following,

Proposition 2.35. There is a natural completely isometric isomorphism ˜(−) : CB(A ⊗̂B,C) ∼=
CB(A, CB(B,C))

By instantiating the proposition above with the dualizing object C, we get two convenient
descriptions of the operator space dual of a projective tensor product.

Corollary 2.36. There are two completely isometric isomorphisms (A ⊗̂B)∗ ∼= CB(A,B∗) and
(A ⊗̂B)∗ ∼= CB(B,A∗).

As indicated by the corollary above we can now prove that the projective tensor product is
commutative.

Proposition 2.37. [ER00, Prop. 7.1.4] Given operator spaces A and B, there is an isometric
isomorphism,

σA,B : A ⊗̂B ∼= B ⊗̂A

natural in both arguments.
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Proof. The underlying isomorphism of Banach spaces is generated by the morphism that sends a⊗
b→ b⊗a, note that we have yet to show that this is a (complete) isometry. By Proposition 2.27 it is
sufficient to prove that (σA,B)∗ gives a well-defined surjective isometry of the duals. Upon inspecting
how the isomorphisms in Corollary 2.36 would be constructed (see proofs of Proposition 2.33 and
Proposition 2.34), we can see that the isomorphism of the duals indeed is given by precomposing
with σA,B

(A ⊗̂B)∗ ∼= CB(B,A∗) ∼= (B ⊗̂A)∗

f 7→ (b 7→ (f(−⊗ b))) 7→ ((b⊗ a) 7→ f(a⊗ b))

Naturality follows by diagram chase on the dense subspace A⊗B.

As expected we can also prove associativity and and provide a unit, note in particular the
naturality of the isomorphisms provided below.

Proposition 2.38. [ER00, Prop. 7.1.4] Given operator spaces A, B and C, there is an isometric
isomorphism, natural in all three arguments

αA,B,C : (A ⊗̂B) ⊗̂C ∼= A ⊗̂(B ⊗̂C).

Proof. The map αA,B,C is defined by

αA,B,C : (A ⊗̂B) ⊗̂C ∼= A ⊗̂(B ⊗̂C)
(a⊗ b) ⊗ c 7→ a⊗ (b⊗ c)

This defines an isomorphism on the underlying Banach spaces. By Proposition 2.27 it is then
sufficient to prove that the induced map on the dual spaces gives a surjective complete isometry.

By repeated use of Corollary 2.36 and Proposition 2.35 we have the following sequence of
isomorphisms

((A ⊗̂B) ⊗̂C)∗ ∼= CB((A ⊗̂B), C∗) ∼= CB(A, CB(B,C∗)) ∼= CB(A, (B ⊗̂C)∗) ∼= (A ⊗̂(B ⊗̂C))∗

f 7→ (a⊗ b 7→ f̃(a⊗ b,−))

7→ (a 7→ (b 7→ ˜̃
f(a, b,−)))

7→ (a 7→ (b⊗ c 7→ f̃(a, b⊗ c)))
7→ (a⊗ (b⊗ c) 7→ f((a⊗ b) ⊗ c))

((A ⊗̂B) ⊗̂C)∗ ∼= CB((A ⊗̂B), C∗)
∼= CB(A, CB(B,C∗))
∼= CB(A, (B ⊗̂C)∗)
∼= (A ⊗̂(B ⊗̂C))∗

Which coincides with the morphism given by precomposing with αA,B,C .
Naturality holds on the restriction to the dense subset (A⊗B)⊗C, and as any dense morphism

extends uniquely by Proposition 2.25, α− must consequently be natural.

Proposition 2.39. We have isometric isomorphisms

λA : C ⊗̂A→ A

and
ρA : A→ A ⊗̂C

these are natural in A.

11



Proof.
λA : C ⊗̂A → A

n⊗ a 7→ na

This gives an isomorphism on the underlying vector spaces, to prove that this is indeed an
isometry we observe that the following spaces are isometrically isomorphic by λ∗A

A∗ ∼= CB(A, CB(C,C)) ∼= (C ⊗̂A)∗

f 7→ (a 7→ (n 7→ nf(a))) 7→ (n⊗ a 7→ nf(a))

Naturality follows again from diagram chasing. We construct ρA using the following:

ρA : A → A ⊗̂C
a 7→ a⊗ 1

To prove that it indeed is a natural isometric isomorphism one can proceed similarily as for λ−.

Another way to define the projective tensor product is via the subspace inclusion A ⊗ B →
(CB(A,B∗))∗, identifying a ⊗ b with (f 7→ f(a)(b)), and then completing A ⊗ B with respect to
the induced subspace norm. This characterization is equivalent to the concrete description above
as witnessed by the following proposition.

Proposition 2.40. The inclusion A ⊗̂B → (CB(A,B∗))∗ is a complete isometry.

Proof. By combining Proposition 2.20 and Corollary 2.36 have an isometric embedding A ⊗̂B →
(A ⊗̂B)∗∗ ∼= (CB(A,B∗))∗, which corresponds to the map a⊗ b 7→ (f 7→ f(a)(b)).

2.2.2 Injective tensor

To continue our Banach Space analogy, we also define an injective norm on the tensor product.
Again we can define this tensor in several equivalent ways, either by giving a norm explicitly or by
embedding it into another operator space, we present both below.

Definition 2.41. [ER00, (8.1.7)] Let A and B be operator spaces, given a u ∈ Mn(A ⊗ B) we
defined the injective norm on u to be

∥u∥∨ = sup{∥(f ⊗ g)n(u)∥ | f ∈Mp(A∗), g ∈Mq(B∗), ∥f∥, ∥g∥ ≤ 1}

Definition 2.42. [ER00, p. 139] Let A and B be two operator spaces then the injective tensor

product, denoted A ⊗̂B, is defined as the completion of A⊗B with respect to ∥ − ∥∨.

Proposition 2.43. Let A and B be two operator spaces A ⊗̂B with operator norm given by ∥−∥∨
is an operator space.

We can equivalently consider the following realization,

Proposition 2.44. [ER00, Prop. 8.1.1] Let A and B be operator spaces then the injective norm
is equivalent to the norm induced by the embedding:

A⊗B → CB(A∗, B)
a⊗ b 7→ (f 7→ f(a)b)

12



The following is a useful variation of the previous result.

Proposition 2.45. [ER00, Prop. 8.1.2] Let A and B be operator spaces the following is a com-
pletely isometric embedding:

A∗ ⊗̂B → CB(A,B)
f ⊗ b 7→ (a 7→ f(a)b)

Restricting to finite dimensional spaces the injective tensor has a particularly nice description.

Proposition 2.46. Given two finite dimensional operator spaces A and B the isometric embedding

A ⊗̂B → CB(A∗, B)

is an isometric isomorphism.

Proof. The argument follows by combining Proposition 2.45, Corollary 2.22 and the rank-nullity
argument on the underlying vector spaces.

Proposition 2.47. [ER00, Cor. 8.1.7] The injective tensor product is naturally commutative and
associative.

2.2.3 Haagerup tensor

In this section we introduce the Haagerup tensor norm, which gives a tensor product with some
particular properties.

Definition 2.48. [ER00, (9.1.8)] Given a ∈ Mn,r(A) and b ∈ Mr,m(B) the matrix inner product
(denoted ⊙) of a and b is defined as

(a⊙ b)i,j =

r∑
k=1

ai,k ⊗ bk,j

Definition 2.49. [ER00, (9.2.1)] Given an v ∈ Mn(A⊗B) the Haagerup norm of v is defined as

∥v∥h = inf{∥u∥∥w∥ | u⊙ w = v}

Using the Haagerup norm we can define yet another type of tensor product on operator spaces.

Definition 2.50. [ER00, p. 153] Let A and B be two operator spaces then the Haagerup tensor
product, denoted A⊗h B, is defined as the completion of A⊗B with respect to ∥ − ∥h.

Proposition 2.51. [ER00, Th. 9.2.1] Let A and B be two operator spaces A ⊗h B with operator
norm given by ∥ − ∥h is an operator space.

Proposition 2.52. [Ble16, par. 3.1.13] Given operator spaces A1, A2, B1 and B2 and completely
bounded maps fi : Ai → Bi, we have a completely bounded map defined by the following assignment
on elementary tensors

f1 ⊗h f2 : A1 ⊗h A2 → B1 ⊗h B2

a1 ⊗ a2 7→ f1(a1) ⊗ f2(a2)

This assignment makes the projective tensor product functorial
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Corollary 2.53. [ER00, Prop. 9.2.5] Given operator spaces A1, A2, B1 and B2 and completely
contractive maps fi : Ai → Bi, we have a completely contractive map

f1 ⊗h f2 : A1 ⊗h A2 → B1 ⊗h B2

Proposition 2.54. [ER00, Proposition 9.3.2] Let A be an operator space and H be a Hilbert space
then we have isometric isomorphisms

A⊗h Hc
∼= A ⊗̂Hc

Hc ⊗h A ∼= Hc ⊗̂A

It is often hard to compute the Haagerup tensor product of two operator spaces explicitly, by
the proposition above we can provide the following two concrete examples.

Example 2.55. Given a Hilbert space H we have the following isomorphisms for the Haagerup
tensor of the Hilbert column operator space Hc

Hc ⊗h (Hc)
∗ ∼= Hc ⊗̂(Hc)

∗

(Hc)
∗ ⊗h Hc

∼= (Hc)
∗ ⊗̂Hc

Note that this example also witnesses the non-commutativity of this tensor.
While the Haagerup tensor is non-commutative it still have associativity and a unit, note again

that the isomorphisms below are natural in each argument.

Proposition 2.56. [ER00, Prop. 9.2.7] Given operator spaces A, B and C, there is a completely
isometric isomorphism, natural in all three arguments

α′
A,B,C : (A⊗h B) ⊗h C ∼= A⊗h (B ⊗h C)

(a⊗ b) ⊗ c 7→ a⊗ (b⊗ c)

Proposition 2.57. We have isometric isomorphisms

λ′A : C⊗h A→ A

and
ρ′A : A→ A⊗h C

these are natural in A.

One of the particular properties the Haagerup tensor product has is that it is dual to itself, as
illustrated by the propositions below.

Proposition 2.58. [ER00, Th. 9.4.7] Given two operator spaces A and B there is a natural
isometric embedding

A∗ ⊗h B
∗ → (A⊗h B)∗

f ⊗ g 7→ (a⊗ b 7→ f(a)g(b))

Corollary 2.59. [ER00, Cor. 9.4.8] If either A or B is finite dimensional then the previous
embedding is an isometric isomorphism.
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2.2.4 Direct sums

To revert back into our Banach space analogy, we can also define various norms on the direct sum
of two operator spaces. The two most interesting ones, the 1- and ∞-norm turn out to coincide
with a familiar construction in category theory, a fact we will address in the next section.

Definition 2.60. [Ble16, par. 1.2.17] Let A and B be operator spaces, the ∞-direct sum of these
operator spaces has as underlying normed space the cartesian product, A × B equipped with the
∞ norm, ∥(a, b)∥∞ := max(∥a∥, ∥b∥). The operator space structure is then given by the following
isometric identifications for each matrix space.

Mn(A⊕∞ B) ∼= Mn(A) ⊕∞ Mn(B)

Concretely, the operator space ∞-norm can be described as

Proposition 2.61. Given u = [(ai,j , bi,j)] ∈Mn(A⊕∞ B)

∥u∥n = max(∥[ai,j ]∥, ∥[bi,j ]∥)

Given this presentation of the norm it is that the underlying Banach space of the operator space
A⊕∞ B coincides with the ℓ∞ direct sum of the underlying Banach spaces of A and B

Definition 2.62. [Ble16, par. 1.3.14] Let A and B be operator spaces, the 1-direct sum of these
operator spaces has as underlying normed space the cartesian product, A × B, with operator
space structure induced by the identification of A ⊕1 B included into (A∗ ⊕∞ B∗)∗, by the map
(a, b) 7→ ((f, g) 7→ f(a) + g(b)).

Concretely, the operator space 1-norm can be described as the following:

Proposition 2.63. Given u = [(ai,j , bi,j)] ∈Mn(A⊕1 B)

∥u∥n = sup{∥[fi,j(ai,j) + gi,j(bi,j)]∥ | (f, g) ∈Mn(A∗ ⊕∞ B∗), ∥(f, g)∥ ≤ 1}

Note that the underlying Banach space of the operator space A⊕1B coincides with the ℓ1 direct
sum of the underlying Banach spaces of A and B.

3 MALL

3.1 Models of MALL

The fundamental idea in categorical proof theory is that propositions should be interpreted as
objects and proofs should be interpreted as morphisms. Below we give a brief overview of the
notions required for a categorical model of classical MALL, and the interpretations employed.

Definition 3.1 (∗-autonomous category). A symmetric monoidal closed category is called ∗-
autonomous if the transpose ∂A : A → ((A ⊸ ⊥) ⊸ ⊥) of the evaluation map evalA : A ⊗ (A ⊸
⊥) → ⊥ is an isomorphism.

We can see the natural isomorphism ∂− as the statement that the double negation of a formula
is equivalent to the formula itself in classical logic, we will often denote A⊸ ⊥ by A∗.
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Proposition 3.2. [Mel09, Ch. 5] Any ∗-autonomous category is a model of classical MALL where
JA⊗BK := JAK ⊗ JBK and JA`BK := JAK∗ ⊸ JBK.

Upon inspection of the formation rules of the additive fragment of linear logic it is clear that we
only need our ∗-autonomous category to admit finite products and coproducts in order to model
MALL.

Proposition 3.3. [Mel09, Ch. 5] Any cartesian ∗-autonomous category (hence also cocartesian)
is a model of classical MALL logic where JA&BK := JAK × JBK and JA⊕BK := JAK + JBK.

The class of cartesian ∗-autonomous categories is sound and complete with respect to MALL, in
particular this implies that it is cut-elimination invariant, see [Mel09] for a comprehensive review
of categorical models of linear logic.

3.2 fdOS as model of MALL

We now introduce the category of finite dimensional operator spaces, which we will proceed to
verify is a model of classical MALL.

Definition 3.4. Let fdOS denote the category of abstract finite dimensional operator spaces and
completely contractive maps.

In Section 2.2.1 we proved that the projective tensor product was functorial with respect to com-
pletely contractive maps, Corollary 2.32, as well as the fact that there exists natural isomorphisms
shaped like the associator and unitors of a monoidal category, Proposition 2.38 and Proposition 2.39.
As expected we have the following monoidal structure on fdOS.

Proposition 3.5. fdOS equipped with the projective tensor product, (fdOS,C, ⊗̂), is monoidal.

To prove this we first prove a small lemma:

Lemma 3.6. The forgetful functor U : fdOS → Vect is faithful and maps the projective tensor
product to the algebraic tensor of vector spaces.

Proof. Faithfulness follows from the fact that any completely contractive map is a linear map.
Tensor product preservation follows from the fact that any finite dimensional normed space is
complete Proposition 2.2, as the underlying vector space of A ⊗̂B is A⊗B, for finite dimensional
operator spaces A and B.

Proof of Proposition 3.5. The associator and unitors are given by the natural isomophisms in
Proposition 2.38 and Proposition 2.39. The commutativity of the MacLane pentagon and the
triangle identity, now follows from Lemma 3.6.

To prove that fdOS is monoidal closed with respect to this monoidal structure it is sufficient
to prove that Proposition 2.35 restricts to completely contractive maps.

Lemma 3.7. There is a natural isomorphism fdOS(A ⊗̂B,C) ∼= J CC(A,B;C)

Proof. Jointly completely contractive maps A×B → C correspond exactly to completely contractive
A ⊗̂B → C by the fact that the isomorphism in Proposition 2.33 is isometric.

Lemma 3.8. There is a natural isomorphism θ : J CC(A,B;C) ∼= fdOS(A, CB(B,C)).
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Proof. Let φ : A×B → C then θ(φ) : A→ CB(B,C) is defined by θ(φ)(a)(b) = φ(a, b). We begin
by proving that the image of A under φ indeed is in CB(B,C). Let thus a ∈ A and b ∈ MnB for
some n ∈ N, then

∥θ(φ)(a)n(b)∥ = ∥φ1;n(a, b)∥ ≤ ∥φ∥cb∥a∥∥b∥

Consequently ∥θ(φ)(a)∥cb ≤ ∥φ∥cb∥a∥, i.e. θ(φ)(a) is completely bounded. Now we prove that it
is indeed an isomorphism by constructing an inverse, given instead a ψ : A→ CB(B,C) let θ−1 be
defined by θ−1(ψ)(a, b) = (ψ)(a)(b). We verify that θ−1(ψ) indeed is completely contractive:

∥θ−1(ψ)p;q(a, b)∥ = ∥ψp(a)q(b)∥ ≤ ∥ψq(a)∥cb∥b∥ ≤ ∥a∥∥b∥

The last inequality is true as ψ is completely contractive. It is clear that θθ−1(ψ) = ψ and
θ−1θ(φ) = φ.

This is essentially saying that φ : A × B → C is jointly completely contractive if and only if
θ(φ) : A → CB(B,C) is a complete contraction. Combining the two lemmas then gives us the
monoidal closure.

Proposition 3.9. fdOS with the projective tensor product ⊗̂ is monoidal closed.

Proof. Combining the previous two lemmas we have a natural isomorphism fdOS(A ⊗̂B,C) ∼=
fdOS(A, CB(B,C)). That is, the internal hom of fdOS is thus CB(−,−).

Now we leverage the fact the we only consider finite dimensional spaces to get a ∗-autonomous
structure.

Proposition 3.10. The category fdOS is ∗-autonomous, with C as dualizing object (or operator
space dual (−)∗ = CB(−,C) as dualization functor).

Proof. The transpose of the evaluation map evA,C : CB(A,C) ⊗A→ C is the canonical embedding
of A into its double dual

dA : A → CB(CB(A,C),C)
a 7→ (f 7→ f(a))

consequently the claim follows by Corollary 2.22

We have now proved that fdOS is a model of MLL, with the tensor ⊗ given by ⊗̂ and the par
` given by CB((−)∗,−), which we in Proposition 2.46 proved is isomorphic to the injective tensor

product, ⊗̂. Consequently, the multiplicative connectives can be modeled by constructions from
operator space theory. Note that this is a non-degenerate model of MLL as the tensor and the parr
do not coincide. To get a model of MALL we also need additive structure, to this end consider the
two direct sums defined in Section 2.2.4, we will prove that these coincide with the product and
coproducts in fdOS.

Proposition 3.11. ⊕∞ is the product in fdOS.

Proof. Let A,B,C be some operator spaces and f : C → A and g : C → B be completely contractive
maps, then we get a unique map from C to A⊕∞ B given by the pair:
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C

A A⊕∞ B B

⟨f,g⟩f g

π1 π2

The map ⟨f, g⟩ is completely contractive and the ⊕∞ is the product in fdOS.

We can prove that ⊕1 is the dual to ⊕∞ under the operator space dual.

Proposition 3.12. The ℓ1 direct sum, ⊕1, is dual to ⊕∞ under the operator space dual, that is,
there are natural completely isometric isomorphisms (A ⊕1 B)∗ ∼= A∗ ⊗∞ B∗ and (A ⊕∞ B)∗ ∼=
A∗ ⊗1 B∗.

Proof. Consider the morphism given by the universal property of the product in the following
diagram:

h : A⊕1 B → C

(A⊕1 B)∗

A∗ A∗ ⊕∞ B∗ B∗ h(0,−) : B → C

u
pBpA

π2

The other leg is defined similarly, pA := h(−, 0).
Both pA and pB are both completely contractive, we show this for pB . Let h ∈Mn((A⊕1B)∗) ∼=

CB(A⊕1 B,Mn) then:

∥h(0, b)∥ ≤ ∥h∥cb(∥b∥ + ∥0∥) = ∥h∥cb∥b∥

thus ∥pb(h)∥cb ≤ ∥h∥cb. Consequently u is completely contractive. As u has an inverse, v :
A∗ ⊕∞ B∗ → (A⊕1 B)∗, defined by v(f, g)(a, b) = f(a) + g(b) that is also completely contractive.
To prove this let (f, g) ∈Mn(A∗ ⊕∞ B∗) ∼= CB(A,Mn) ⊕∞ CB(B,Mn) We have that:

∥vn(f, g)(a, b)∥ = ∥f(a)+g(b)∥ ≤ ∥f(a)∥+∥g(b)∥ ≤ ∥f∥cb∥a∥+∥g∥cb∥b∥ ≤ max(∥f∥cb, ∥g∥cb∥)(∥a∥+∥b∥)

consequently ∥vn(f, g)∥ ≤ max(∥f∥cb, ∥g∥cb) for all n ∈ N.
As both u and v are completely contractive by Proposition 2.24, u is a completely isometric

isomorphisms and (A⊕1 B)∗ ∼= A∗ ⊕∞ B∗.
We can construct the other isomorphism similarly, but by the ∗-autonomous structure of fdOS

it follows from the isomorphisms above.

Corollary 3.13. The ℓ1 direct sum, ⊕1 is the coproduct in fdOS.

It now follows that we can build morphism in fdOS that correspond to derivations in MALL. For
example, we can easily construct isomorphisms corresponding to the distibutivity laws in MALL.

Proposition 3.14. There is a natural completely isometric isomorphism (A ⊗̂(B⊕∞C)) ∼= (A ⊗̂B)⊕∞

(A ⊗̂C).
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Proof. We make use of Proposition 2.46 and the isomorphism is thus CB(A∗, (B⊕∞C)) ∼= CB(A∗, B)⊕∞

CB(A∗, C). We prove something stronger: CB(A, (B⊕∞C)) ∼= CB(A,B)⊕∞ CB(A,C). The under-
lying isomorphism comes from the universal property of the product and is thus natural. We start
by proving that this is an isometry, let fn : Mn(A) → Mn(B) and gn : Mn(A) → Mn(C) and let
a ∈Mn(A), then

∥⟨fn, gn⟩(a)∥ = (fn(a), gn(a)) = max(∥fn(a)∥, ∥gn(a)∥) ≤ max(∥f∥cb, ∥g∥cb)∥a∥

thus ∥⟨f, g⟩∥cb ≤ ∥(f, g)∥cb. At the same time we have

∥fn∥ ≤ max(∥fn(a)∥, ∥gn(a)∥) = ∥(fn(a), gn(a))∥ ≤ ∥⟨fn, gn⟩∥∥a∥ ≤ ∥⟨f, g⟩∥cb∥a∥

thus ∥⟨f, g⟩∥cb = ∥(f, g)∥cb.

By the ∗-autonomous structure on fdOS we also have the other distibutivity law as a corollary.

Corollary 3.15. There is a natural completely isometric isomorphism (A ⊗̂(B⊕1C)) ∼= (A ⊗̂B)⊕1

(A ⊗̂C).

4 BV-structure

4.1 BV-logic

Guglielmi presented in [Gug99] an extension of the multiplicative fragment of linear logic by a
non-commutative, self-dual connective, referred to as the sequantial, this extension is called Basic
System V or BV-logic for short. BV-logic does not have an associated sequent style calculus, this
turns out to be impossible, see [Gug99]. Instead the deductive system is a calculus of structures
style system, which has a distinctive feature, deep inference, this means that inference rules can be
applied anywhere in the context. From a categorical proof theory perspective having deep inference
indicates that the context formation rules should be interpreted by endofunctors on the categorical
model.

4.2 BV-category

A BV-category is a category equipped with monoidal structures that satisfy the coherence condi-
tions of BV-logic, in which, it is possible to encode its structural rules as natural maps between
propositions. The following formal definition is equivalent to the one first presented in [BPS10].

Definition 4.1. [BPS10, Sec. 3] A symmetric linear distributive category (C,⊥,⊗,`) with an
additional monoidal structure (C, I,▷) that is normal duoidal to (C,⊥,⊗) is called a BV-category

For (C, I,▷) to be normal duoidal to (C,⊥,⊗) we have natural transformations:

w : (A ▷ B) ⊗ (C ▷ D) → (A⊗ C) ▷ (B ⊗D)

and
i : ⊥ ∼= I δI : ⊥ → ⊥ ▷ ⊥ µI : I ⊗ I → I

the morphism w is often called weak interchange.
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Along with coherence conditions for associativity,

((A ▷ B) ⊗ (C ▷ D)) ⊗ (E ▷ F ) (A ▷ B) ⊗ ((C ▷ D) ⊗ (E ▷ F ))

((A⊗ C) ▷ (B ⊗D)) ⊗ (E ▷ F ) (A ▷ B) ⊗ ((C ⊗ E) ▷ (D ▷ F ))

((A⊗ C) ⊗ E) ▷ ((B ⊗D) ⊗ F ) (A⊗ (C ⊗ E)) ▷ (B ⊗ (D ⊗ F ))

α

α▷α

((A ▷ C) ▷ E) ⊗ ((B ▷ D) ▷ F ) (A ▷ (C ▷ E)) ⊗ (B ▷ (D ▷ F ))

((A ▷ C) ⊗ (B ▷ D)) ▷ (E ⊗ F ) (A⊗B) ▷ ((C ▷ E) ⊗ (D ▷ F ))

((A⊗B) ▷ (C ⊗D)) ▷ (E ⊗ F ) (A⊗B) ▷ ((C ⊗D) ▷ (E ⊗ F ))

α⊗α

α

and unitality,

⊥⊗ (A ▷ B) (⊥ ▷ ⊥) ⊗ (A ▷ B)

A ▷ B (⊥⊗A) ▷ (⊥⊗B)

δ⊥⊗id

wλA▷B

λA▷λB

(A ▷ B) ⊗⊥ (A ▷ B) ⊗ (⊥ ▷ ⊥)

A ▷ B (A⊗⊥) ▷ (B ⊗⊥)

δ⊥⊗id

wρA▷B

ρA▷ρB

I ▷ (A⊗B) (I ⊗ I) ▷ (A⊗B)

A⊗B (I ▷ A) ⊗ (I ▷ B)

µI▷id

λA▷B

λA⊗λB

w

(A⊗B) ▷ I (A⊗B) ▷ (I ⊗ I)

A⊗B (A ▷ I) ⊗ (B ▷ I)

id▷µI

ρA▷B

ρA⊗ρB

w

as well as diagrams saying that ⊥ is a comonoid in (C, I,▷) and that I is a monoid in (C,⊥,⊗).

Note that in a BV-category, the context formation rules are indeed interpreted by endofunctors
as any monoidal structure gives two families of endofunctors. To properly describe BV-logic we also
need a notion of duality, and as a symmetric linear distributive category equipped with negation is
the same as a ∗-autonomous category under the interpretation of the par as A` B := A∗ ⊸ B, a
BV-category with negation is defined be the following:

Definition 4.2. [BPS10, Sec. 4] A BV-category with negation is a ∗-autonomous category (C,⊥,⊗,⊸)
with an additional monoidal structure (C, J,▷) that is normal duoidal to (C, I,⊗)
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4.2.1 Interpreting BV-logic derivations?

In a BV-category the coherence conditions and inference rules occur as natural morphisms induced
by the structure, consequently we can interpret derivations of formulas as morphisms in our category.
For example the self-dualness of ▷ can be derived in the following way:

Example 4.3. [BPS10, Th. 4.6] The self-duality isomorphism is given by the transpose of

(A∗ ▷ B∗) ⊗ (B ▷ A)
w−→ (A∗ ⊗A) ▷ (B∗ ⊗B)

evalA▷evalB−−−−−−−−→ ⊥ ▷ ⊥ w∗

−−→ ⊥

BV-logic has a slightly different cut-rule, thus, as noted in [BPS10], the coherence conditions
that a categorical model should satisfy are not clear. Hence we do not address soundness and
completeness of BV-categories with respect to BV-logic.

4.3 BV-structure of fdOS

As implied in Section 2.2.3 we can define yet another monoidal structure on fdOS using the
Haagerup tensor on operator spaces. Recall that this tensor product is self-dual on finite oper-
ator spaces, as well as non-commutative and it shares the same unit as the projective tensor. We
have, in fact, that fdOS is an example of a BV-category.

Proposition 4.4. fdOS is a BV-category with negation with using the following structures
(fdOS,C, ⊗̂, CB(−,−)) and (fdOS,C,⊗h).

The duoidality follows naturally from the duality of the ∗-autonomous structure and the fact
that ⊗h is self-dual and functorial with respect to completely bounded maps, and the normality
follows from ⊗̂ and ⊗h sharing a unit. We split the formal proof of Proposition 4.4 into smaller
steps.

Proposition 4.5. fdOS equipped with the Haagerup tensor product is monoidal.

To prove this we prove a small lemma:

Lemma 4.6. The forgetful functor U : fdOS → Vect is faithful and maps the Haagerup tensor
product to the algebraic tensor of vector spaces.

Proof. Faithfulness follows from the fact that any completely contractive map is a linear map.
Tensor product preservation follows from the fact that any finite dimensional normed space is
complete Proposition 2.2, as the underlying vector space of A⊗hB is A⊗B, for finite dimensional
operator spaces A and B.

Proof. The associator is given by the morphism Proposition 2.56, and the unitors by Proposi-
tion 2.57. The commutativity of the MacLane pentagon and the triangle identity follows from
Lemma 4.6.

Proposition 4.7. The Haagerup tensor monoidal structure on fdOS, (fdOS,C, ⊗̂), is normal
duoidal to the monoidal category (fdOS,C,⊗h).
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Proof. In order to construct a morphism w : (A ⊗h B) ⊗̂(C ⊗h D) → (A ⊗̂C) ⊗h (B ⊗̂D), we
construct a morphism whose dual will be w. It is constructed as the following composition:

(A ⊗̂B) ⊗h (C ⊗̂D) ∼= CB(A∗, B) ⊗h CB(C∗, D)
(f⊗g 7→f⊗g)−−−−−−−−→ CB(A∗ ⊗h C

∗, B ⊗h D) ∼= CB((A⊗h C)∗, B ⊗h D) ∼= (A⊗h C) ⊗̂(B ⊗h D)

Since the Haagerup tensor and the projective tensor share a unit our i is the identity on C, δ is
the isomorphism C ∼= C ⊗h C and µ is C ⊗̂C ∼= C. Commutativity of the coherence diagrams
in Section 4.2 follows from Lemma 3.6 and Lemma 4.6 as they commute in Vect for the dual
diagrams.

5 Conclusion

In this work we studied the properties of the category of finite dimensional operator spaces (fdOS).
In order to be self-contained, we give an introduction to operator space theory as well as an overview
of the relevant constructions.

In doing so, we proved that fdOS is a cartesian and cocartesian ∗-autonomous category, that is,
a model of classical multiplicative additive linear logic. In particular, we proved that the connectives
can be interpreted by constructions natural to operator space theory. Indeed, we proved that the
multiplicative connectives can be interpreted by the projective and injective tensors on operator
spaces, and the additives by the l∞- and l1-direct sums. Additionally, we also proved that the
Haagerup tensor product has similar properties as the sequential connective in BV-logic, and that
this tensor product gives the additional monoidal structure needed for fdOS to be a BV-category
with negation.

Having shown that fdOS is a model of MALL, where the duality functor that we model negation
with is the functorial extension of the operator space dual, indicates that we can describe the
Heisenberg-Schrödinger duality using a linear logic negation. The next step would be to carve out
from fdOS a new category whose structure reflects the Heisenberg-Schrödinger duality. This way
we can identify the relevant categorical structure in order to be able to find a type system where
the linear negation of linear logic describes the Heisenberg-Schrödinger duality.
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